21179488 |
Ben Amara A et al.:
Coxiella burnetii, the agent of Q fever, replicates within trophoblasts and induces a unique transcriptional response
PLoS ONE
2010
5
|
21030501 |
Oyston PC et al.:
Q fever: the neglected biothreat agent
J. Med. Microbiol.
2011
60: 9-21
|
10217829 |
Heinzen RA et al.:
Developmental biology of Coxiella burnettii
Trends Microbiol.
1999
7: 149-154
|
20023428 |
Vazquez CL et al.:
Beclin 1 modulates the anti-apoptotic activity of Bcl-2: insights from a pathogen infection system
Autophagy
2010
6: 177-178
|
18813881 |
Shannon JG et al.:
Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii
Immunol. Res.
2009
43: 138-148
|
17381428 |
Voth DE et al.:
Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii
Cell. Microbiol.
2007
9: 829-840
|
19538264 |
Ghigo E et al.:
Intracellular life of Coxiella burnetii in macrophages
Ann. N. Y. Acad. Sci.
2009
1166: 55-66
|
20455682 |
Gikas A et al.:
Q fever: clinical manifestations and treatment
Expert Rev Anti Infect Ther
2010
8: 529-539
|
22522687 |
Beare PA et al.:
Two Systems for Targeted Gene Deletion in Coxiella burnetii
Appl. Environ. Microbiol.
2012
78: 4580-4589
|
21216993 |
Voth DE et al.:
The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates
J. Bacteriol.
2011
193: 1493-1503
|
20199576 |
Morgan JK et al.:
Polar localization of the Coxiella burnetii type IVB secretion system
FEMS Microbiol. Lett.
2010
305: 177-183
|
22711632 |
McDonough JA et al.:
Coxiella burnetii Secretion Systems
Adv. Exp. Med. Biol.
2012
984: 171-197
|
22711631 |
Ghigo E et al.:
The Coxiella burnetii Parasitophorous Vacuole
Adv. Exp. Med. Biol.
2012
984: 141-169
|
20937765 |
Campoy EM et al.:
The early secretory pathway contributes to the growth of the Coxiella-replicative niche
Infect. Immun.
2011
79: 402-413
|
21772829 |
Hussain SK et al.:
Host Kinase Activity is Required for Coxiella burnetii Parasitophorous Vacuole Formation
Front Microbiol
2010
1: 137
|
20515926 |
Howe D et al.:
Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages
Infect. Immun.
2010
78: 3465-3474
|
22711626 |
Mertens K et al.:
Defense Mechanisms Against Oxidative Stress in Coxiella burnetii: Adaptation to a Unique Intracellular Niche
Adv. Exp. Med. Biol.
2012
984: 39-63
|
22711633 |
Gilk SD et al.:
Role of Lipids in Coxiella burnetii Infection
Adv. Exp. Med. Biol.
2012
984: 199-213
|
21616182 |
Skultety L et al.:
Proteomic comparison of virulent phase I and avirulent phase II of Coxiella burnetii, the causative agent of Q fever
J Proteomics
2011
74: 1974-1984
|
22711629 |
Ihnatko R et al.:
Proteome of Coxiella burnetii
Adv. Exp. Med. Biol.
2012
984: 105-130
|
22711638 |
Amara AB et al.:
Immune Response and Coxiella burnetii Invasion
Adv. Exp. Med. Biol.
2012
984: 287-298
|
18768823 |
Benoit M et al.:
Macrophage polarization in bacterial infections
J. Immunol.
2008
181: 3733-3739
|
20944063 |
Luhrmann A et al.:
Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein
Proc. Natl. Acad. Sci. U.S.A.
2010
107
|
22711637 |
Capo C et al.:
Role of innate and adaptive immunity in the control of q Fever
Adv. Exp. Med. Biol.
2012
984: 273-286
|
22010216 |
Newton HJ et al.:
The Coxiella burnetii Dot/Icm system creates a comfortable home through lysosomal renovation
|
22711635 |
Minnick MF et al.:
Developmental biology of Coxiella burnetii
Adv. Exp. Med. Biol.
2012
984: 231-248
|
22711630 |
Hussain SK et al.:
Coxiella subversion of intracellular host signaling
Adv. Exp. Med. Biol.
2012
984: 131-140
|
20173000 |
Hicks LD et al.:
A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth
J. Bacteriol.
2010
192: 2077-2084
|
23126667 |
Klingenbeck L et al.:
The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level
|
21637816 |
Carey KL et al.:
The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication
PLoS Pathog.
2011
7
|
23176480 |
Hardiman CA et al.:
The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii
Biochem. Soc. Trans.
2012
40: 1353-1359
|
22984121 |
Mehraj V et al.:
Overexpression of the per2 gene in male patients with acute q Fever
J. Infect. Dis.
2012
206: 1768-1770
|
22711640 |
van der Hoek W et al.:
Epidemic Q fever in humans in the Netherlands
Adv. Exp. Med. Biol.
2012
984: 329-364
|
23052984 |
Angelakis E et al.:
Q fever and pregnancy: disease, prevention, and strain specificity
Eur. J. Clin. Microbiol. Infect. Dis.
2013
32: 361-368
|
17353158 |
Meghari S et al.:
Coxiella burnetii stimulates production of RANTES and MCP-1 by mononuclear cells: modulation by adhesion to endothelial cells and its implication in Q fever
Eur. Cytokine Netw.
2006
17: 253-259
|
23245320 |
Barry AO et al.:
Impaired Stimulation of p38alpha-MAPK/Vps41-HOPS by LPS from Pathogenic Coxiella burnetii Prevents Trafficking to Microbicidal Phagolysosomes
Cell Host Microbe
2012
12: 751-763
|
18981248 |
Voth DE et al.:
Sustained activation of Akt and Erk1/2 is required for Coxiella burnetii antiapoptotic activity
Infect. Immun.
2009
77: 205-213
|
23163207 |
Chmielewski T et al.:
Q fever at the turn of the century
Pol. J. Microbiol.
2012
61: 81-93
|
22711627 |
Narasaki CT et al.:
Lipopolysaccharide of Coxiella burnetii
Adv. Exp. Med. Biol.
2012
984: 65-90
|
22065988 |
Narasaki CT et al.:
Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-beta-D-virenose biosynthesis
PLoS ONE
2011
6
|
15792739 |
Raoult D et al.:
Natural history and pathophysiology of Q fever
Lancet Infect Dis
2005
5: 219-226
|
23349930 |
Newton HJ et al.:
Effector Protein Translocation by the Coxiella burnetii Dot/Icm Type IV Secretion System Requires Endocytic Maturation of the Pathogen-Occupied Vacuole
PLoS ONE
2013
8
|
23362322 |
McDonough JA et al.:
Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening
MBio
2013
4
|
23358892 |
Gilk SD et al.:
Bacterial colonization of host cells in the absence of cholesterol
PLoS Pathog.
2013
9
|
18797945 |
Sekeyova Z et al.:
Identification of protein candidates for the serodiagnosis of Q fever endocarditis by an immunoproteomic approach
Eur. J. Clin. Microbiol. Infect. Dis.
2009
28: 287-295
|
23382224 |
Lifshitz Z et al.:
Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal
Proc. Natl. Acad. Sci. U.S.A.
2013
110: E707-E715
|
23687269 |
Maturana P et al.:
Refining the plasmid-encoded type IV secretion system substrate repertoire of Coxiella burnetii
J. Bacteriol.
2013
195: 3269-3276
|
23813730 |
Weber MM et al.:
Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation
J. Bacteriol.
2013
195: 3914-3924
|
24028560 |
Macdonald LJ et al.:
Coxiella burnetii exploits host cAMP-dependent protein kinase signalling to promote macrophage survival
|
22473604 |
MacDonald LJ et al.:
Coxiella burnetii alters cyclic AMP-dependent protein kinase signaling during growth in macrophages
Infect. Immun.
2012
80: 1980-1986
|
24093460 |
Stead CM et al.:
Sec-mediated secretion by Coxiella burnetii
BMC Microbiol.
2013
13: 222
|
24248335 |
Larson CL et al.:
Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis
Proc. Natl. Acad. Sci. U.S.A.
2013
110
|
24082077 |
Elliott A et al.:
Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection
Infect. Immun.
2013
81: 4604-4614
|
24733095 |
Eckart RA et al.:
The anti-apoptotic activity of the Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking
|
26687278 |
Cunha LD et al.:
Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA
Nat Commun
2015
6: 10205
|
10922036 |
Parsek MR et al.:
Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms.
Proc. Natl. Acad. Sci. U.S.A.
2000
97: 8789-8793
|
15695491 |
Sadikot RT et al.:
Pathogen-host interactions in Pseudomonas aeruginosa pneumonia
Am. J. Respir. Crit. Care Med.
2005
171: 1209-1223
|
20723140 |
Williams BJ et al.:
Pseudomonas aeruginosa: host defence in lung diseases.
Respirology
2010
15: 1037-1056
|
20338154 |
Furlong CE et al.:
Human PON1, a biomarker of risk of disease and exposure.
Chem. Biol. Interact.
2010
187: 355-361
|
20336292 |
Abdel-Mawgoud AM et al.:
Rhamnolipids: diversity of structures, microbial origins and roles.
Appl. Microbiol. Biotechnol.
2010
86: 1323-1336
|
20370936 |
Bjarnsholt T et al.:
Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control.
Expert Rev Mol Med
2010
12: E11
|
18704225 |
Dubern JF et al.:
Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species.
Mol Biosyst
2008
4: 882-888
|
19196266 |
de Kievit TR et al.:
Quorum sensing in Pseudomonas aeruginosa biofilms.
Environ. Microbiol.
2009
11: 279-288
|
17254955 |
Diggle SP et al.:
The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment.
Chem. Biol.
2007
14: 87-96
|
20738404 |
Heeb S et al.:
Quinolones: from antibiotics to autoinducers.
FEMS Microbiol. Rev.
2011
35: 247-274
|
21478251 |
Sayner SL et al.:
Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity.
Am. J. Physiol. Lung Cell Mol. Physiol.
2011
301: L117-L124
|
19680249 |
Hauser AR et al.:
The type III secretion system of Pseudomonas aeruginosa: infection by injection.
Nat. Rev. Microbiol.
2009
7: 654-665
|
16207250 |
Ichikawa JK et al.:
Genome-wide analysis of host responses to the Pseudomonas aeruginosa type III secretion system yields synergistic effects.
Cell. Microbiol.
2005
7: 1635-1646
|
15901720 |
Bleves S et al.:
Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1.
J. Bacteriol.
2005
187: 3898-3902
|
19508282 |
Kang Y et al.:
The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa.
Mol. Microbiol.
2009
73: 120-136
|
18524913 |
Kang Y et al.:
The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon.
Microbiology (Reading
2008
154: 1584-1598
|
16428760 |
Shen DK et al.:
PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa
Infect. Immun.
2006
74: 1121-1129
|
10903129 |
Henriksson ML et al.:
14-3-3 proteins are required for the inhibition of Ras by exoenzyme S.
Biochem. J.
2000
349: 697-701
|
17765657 |
Wiedmaier N et al.:
Bacteria induce CTGF and CYR61 expression in epithelial cells in a lysophosphatidic acid receptor-dependent manner.
Int. J. Med. Microbiol.
2008
298: 231-243
|
16966406 |
Jia J et al.:
Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells.
Infect. Immun.
2006
74: 6557-6570
|
16611230 |
Jansson AL et al.:
Exoenzyme S of Pseudomonas aeruginosa is not able to induce apoptosis when cells express activated proteins, such as Ras or protein kinase B/Akt.
Cell. Microbiol.
2006
8: 815-822
|
11829467 |
Fraylick JE et al.:
Eukaryotic cell determination of ExoS ADP-ribosyltransferase substrate specificity.
Biochem. Biophys. Res. Commun.
2002
291: 91-100
|
12761120 |
Jia J et al.:
c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis.
Infect. Immun.
2003
71: 3361-3370
|
10508420 |
Zhang L et al.:
Residues of 14-3-3 zeta required for activation of exoenzyme S of Pseudomonas aeruginosa.
Biochemistry
1999
38
|
20947426 |
Bleves S et al.:
Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons.
Int. J. Med. Microbiol.
2010
300: 534-543
|
21811488 |
Filloux A et al.:
Protein Secretion Systems in Pseudomonas aeruginosa: An Essay on Diversity, Evolution, and Function.
Front Microbiol
2011
2: 155
|
18331590 |
Kida Y et al.:
A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors.
Cell. Microbiol.
2008
10: 1491-1504
|
18369477 |
Pielage JF et al.:
RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization.
PLoS Pathog.
2008
4
|
16427231 |
Kipnis E et al.:
Targeting mechanisms of Pseudomonas aeruginosa pathogenesis.
Med Mal Infect
2006
36: 78-91
|
21517912 |
Dean P et al.:
Functional domains and motifs of bacterial type III effector proteins and their roles in infection.
FEMS Microbiol. Rev.
2011
35: 1100-1125
|
21901099 |
Bardoel BW et al.:
Pseudomonas evades immune recognition of flagellin in both mammals and plants.
PLoS Pathog.
2011
7
|
21840975 |
Funken H et al.:
The lipase LipA (PA2862) but not LipC (PA4813) from Pseudomonas aeruginosa influences regulation of pyoverdine production and expression of the sigma factor PvdS.
J. Bacteriol.
2011
193: 5858-5860
|
20546309 |
Rosenau F et al.:
Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa.
FEMS Microbiol. Lett.
2010
309: 25-34
|
19192306 |
Bauman SJ et al.:
Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells.
BMC Microbiol.
2009
9: 26
|
15306013 |
Barker AP et al.:
A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis.
Mol. Microbiol.
2004
53: 1089-1098
|
20693680 |
Otero LH et al.:
Crystallization and preliminary X-ray diffraction analysis of Pseudomonas aeruginosa phosphorylcholine phosphatase.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
2010
66: 957-960
|
19103776 |
Wargo MJ et al.:
GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites.
Infect. Immun.
2009
77: 1103-1111
|
20370820 |
Imperi F et al.:
Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosa.
Environ. Microbiol.
2010
12: 1630-1642
|
18663005 |
Upritchard HG et al.:
Immunoproteomics to examine cystic fibrosis host interactions with extracellular Pseudomonas aeruginosa proteins.
Infect. Immun.
2008
76: 4624-4632
|
19064995 |
Venza I et al.:
Pseudomonas aeruginosa induces interleukin-8 (IL-8) gene expression in human conjunctiva through the recruitment of both RelA and CCAAT/enhancer-binding protein beta to the IL-8 promoter.
J. Biol. Chem.
2009
284: 4191-4199
|
21325275 |
Hachani A et al.:
Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins.
J. Biol. Chem.
2011
286
|
20511495 |
Bernard CS et al.:
Nooks and crannies in type VI secretion regulation.
J. Bacteriol.
2010
192: 3850-3860
|
19400797 |
Hsu F et al.:
TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa.
Mol. Microbiol.
2009
72: 1111-1125
|
20114026 |
Hood RD et al.:
A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria
Cell Host Microbe
2010
7: 25-37
|
21833328 |
Diaz MR et al.:
Intrinsic and Extrinsic Regulation of Type III Secretion Gene Expression in Pseudomonas Aeruginosa.
Front Microbiol
2011
2: 89
|
21955777 |
Moscoso JA et al.:
The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling
Environ. Microbiol.
2011
13: 3128-3138
|
21839744 |
Izore T et al.:
Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa.
J. Mol. Biol.
2011
413: 236-246
|
21987808 |
Limmer S et al.:
Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model.
Proc. Natl. Acad. Sci. U.S.A.
2011
108
|
21626144 |
Shin HS et al.:
Up-regulation of bradykinin B2 receptor by Pseudomonas aeruginosa via the NF-kappaB pathway.
Curr. Microbiol.
2011
63: 138-144
|
21531801 |
Elsen S et al.:
PtrA is a periplasmic protein involved in Cu tolerance in Pseudomonas aeruginosa.
J. Bacteriol.
2011
193: 3376-3378
|
21264306 |
Inclan YF et al.:
FimL regulates cAMP synthesis in Pseudomonas aeruginosa.
PLoS ONE
2011
6
|
22040088 |
Anderson DM et al.:
Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU
Mol. Microbiol.
2011
82: 1454-1467
|
16882033 |
Stirling FR et al.:
Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin.
Cell. Microbiol.
2006
8: 1294-1309
|
19931407 |
Lins RX et al.:
ExoU modulates soluble and membrane-bound ICAM-1 in Pseudomonas aeruginosa-infected endothelial cells.
Microbes Infect.
2010
12: 154-161
|
21776080 |
Russell AB et al.:
Type VI secretion delivers bacteriolytic effectors to target cells
Nature
2011
475: 343-347
|
22092568 |
Shin HS et al.:
Up-regulation of human bradykinin B1 receptor by secreted components of Pseudomonas aeruginosa via a NF-kappaB pathway in epithelial cells.
FEMS Immunol. Med. Microbiol.
2011
63: 418-426
|
21097525 |
Hurley BP et al.:
Selective eicosanoid-generating capacity of cytoplasmic phospholipase A2 in Pseudomonas aeruginosa-infected epithelial cells.
Am. J. Physiol. Lung Cell Mol. Physiol.
2011
300: L286-L294
|
18411286 |
Hurley BP et al.:
Multiple roles of phospholipase A2 during lung infection and inflammation.
Infect. Immun.
2008
76: 2259-2272
|
21502078 |
Jyot J et al.:
Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection.
J. Infect. Dis.
2011
203: 1369-1377
|
21184216 |
Schweizer HP et al.:
Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production.
Arch. Microbiol.
2011
193: 227-234
|
21184216 |
Schweizer HP et al.:
Pseudomonas aeruginosa aerobic fatty acid desaturase DesB is important for virulence factor production
Arch. Microbiol.
2011
193: 227-234
|
21596130 |
Gloyne LS et al.:
Pyocyanin-induced toxicity in A549 respiratory cells is causally linked to oxidative stress.
Toxicol In Vitro
2011
25: 1353-1358
|
21343341 |
Chen BB et al.:
Calmodulin antagonizes a calcium-activated SCF ubiquitin E3 ligase subunit, FBXL2, to regulate surfactant homeostasis.
Mol. Cell. Biol.
2011
31: 1905-1920
|
21819560 |
Machado GB et al.:
Pseudomonas aeruginosa toxin ExoU induces a PAF-dependent impairment of alveolar fibrin turnover secondary to enhanced activation of coagulation and increased expression of plasminogen activator inhibitor-1 in the course of mice pneumosepsis.
Respir. Res.
2011
12: 104
|
20133635 |
Miao EA et al.:
Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome.
Proc. Natl. Acad. Sci. U.S.A.
2010
107: 3076-3080
|
21479247 |
Sato H et al.:
Modified needle-tip PcrV proteins reveal distinct phenotypes relevant to the control of type III secretion and intoxication by Pseudomonas aeruginosa.
PLoS ONE
2011
6
|
18070936 |
Sutterwala FS et al.:
Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome.
J. Exp. Med.
2007
204: 3235-3245
|
16790784 |
Cuzick A et al.:
The type III pseudomonal exotoxin U activates the c-Jun NH2-terminal kinase pathway and increases human epithelial interleukin-8 production.
Infect. Immun.
2006
74: 4104-4113
|
20956573 |
Wu M et al.:
Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epithelial cells and in mice.
Infect. Immun.
2011
79: 75-87
|
22017253 |
Silverman JM et al.:
Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation.
Mol. Microbiol.
2011
82: 1277-1290
|
22017253 |
Silverman JM et al.:
Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation
Mol. Microbiol.
2011
82: 1277-1290
|
21784934 |
Zhang L et al.:
Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance.
J. Bacteriol.
2011
193: 5510-5513
|
21787339 |
Bartlett JA et al.:
PLUNC: a multifunctional surfactant of the airways.
Biochem. Soc. Trans.
2011
39: 1012-1016
|
21515773 |
Chand NS et al.:
The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection
J. Bacteriol.
2011
193: 2989-2999
|
21515773 |
Chand NS et al.:
The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection.
J. Bacteriol.
2011
193: 2989-2999
|
19513205 |
Dong YH et al.:
A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa
Commun Integr Biol
2008
1: 88-96
|
22194456 |
Kreamer NN et al.:
BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa
J. Bacteriol.
2012
194: 1195-1204
|
20398205 |
Bordi C et al.:
Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis.
Mol. Microbiol.
2010
76: 1427-1443
|
19602144 |
Brencic A et al.:
The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs.
Mol. Microbiol.
2009
73: 434-445
|
21659660 |
Dechecchi MC et al.:
Modulators of sphingolipid metabolism reduce lung inflammation.
Am. J. Respir. Cell Mol. Biol.
2011
45: 825-833
|
21502590 |
Sjoberg BM et al.:
Shift in ribonucleotide reductase gene expression in Pseudomonas aeruginosa during infection
Infect. Immun.
2011
79: 2663-2669
|
21829370 |
Kesarwani M et al.:
A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes
PLoS Pathog.
2011
7
|
21829370 |
Kesarwani M et al.:
A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes.
PLoS Pathog.
2011
7
|
22411978 |
Douzi B et al.:
On the path to uncover the bacterial type II secretion system
Philos. Trans. R. Soc. Lond.
2012
367: 1059-1072
|
19828448 |
Douzi B et al.:
The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus.
J. Biol. Chem.
2009
284
|
21949187 |
Douzi B et al.:
Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates.
J. Biol. Chem.
2011
286
|
21772833 |
Sato H et al.:
Multi-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein, PcrV; Comparison to Orthologs in other Gram-negative Bacteria.
Front Microbiol
2011
2: 142
|
16487320 |
Broms JE et al.:
Tetratricopeptide repeats are essential for PcrH chaperone function in Pseudomonas aeruginosa type III secretion.
FEMS Microbiol. Lett.
2006
256: 57-66
|
12654846 |
Allmond LR et al.:
Protein binding between PcrG-PcrV and PcrH-PopB/PopD encoded by the pcrGVH-popBD operon of the Pseudomonas aeruginosa type III secretion system.
Infect. Immun.
2003
71: 2230-2233
|
22299042 |
Verove J et al.:
Injection of Pseudomonas aeruginosa Exo Toxins into Host Cells Can Be Modulated by Host Factors at the Level of Translocon Assembly and/or Activity.
PLoS ONE
2012
7
|
19910414 |
Bridge DR et al.:
Role of host cell polarity and leading edge properties in Pseudomonas type III secretion.
Microbiology (Reading
2010
156: 356-373
|
15901720 |
Bleves S et al.:
Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1.
J. Bacteriol.
2005
187: 3898-3902
|
11726509 |
Voulhoux R et al.:
Involvement of the twin-arginine translocation system in protein secretion via the type II pathway.
EMBO J.
2001
20: 6735-6741
|
16621825 |
Voulhoux R et al.:
Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport.
J. Bacteriol.
2006
188: 3317-3323
|
19497948 |
Lesic B et al.:
Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis.
Microbiology (Reading
2009
155: 2845-2855
|
17941706 |
Lesic B et al.:
Inhibitors of pathogen intercellular signals as selective anti-infective compounds.
PLoS Pathog.
2007
3: 1229-1239
|
17307856 |
Soscia C et al.:
Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa.
J. Bacteriol.
2007
189: 3124-3132
|
20378835 |
Siehnel R et al.:
A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa.
Proc. Natl. Acad. Sci. U.S.A.
2010
107: 7916-7921
|
19360133 |
Bomberger JM et al.:
Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles.
PLoS Pathog.
2009
5
|
21455491 |
Bomberger JM et al.:
A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system.
PLoS Pathog.
2011
7
|
22103313 |
Tashiro Y et al.:
Multifunctional membrane vesicles in Pseudomonas aeruginosa
Environ. Microbiol.
2012
14: 1349-1362
|
21747810 |
Engel J et al.:
Subversion of mucosal barrier polarity by pseudomonas aeruginosa.
Front Microbiol
2011
2: 114
|
22309196 |
Bardoel BW et al.:
Identification of an immunomodulating metalloprotease of Pseudomonas aeruginosa (IMPa)
Cell. Microbiol.
2012
14: 902-913
|
21189321 |
Fito-Boncompte L et al.:
Full virulence of Pseudomonas aeruginosa requires OprF.
Infect. Immun.
2011
79: 1176-1186
|
16051797 |
Wu L et al.:
Recognition of host immune activation by Pseudomonas aeruginosa
Science
2005
309: 774-777
|
19486157 |
McPhee JB et al.:
The major outer membrane protein OprG of Pseudomonas aeruginosa contributes to cytotoxicity and forms an anaerobically regulated, cation-selective channel
FEMS Microbiol. Lett.
2009
296: 241-247
|
22232685 |
Kung VL et al.:
An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome
Proc. Natl. Acad. Sci. U.S.A.
2012
109: 1275-1280
|
22103442 |
Hao Y et al.:
Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2
Cell. Microbiol.
2012
14: 401-415
|
22354680 |
Coggan KA et al.:
Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype
Curr Issues Mol Biol
2012
14: 47-70
|
15659157 |
Kulasekara HD et al.:
A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes
Mol. Microbiol.
2005
55: 368-380
|
19547710 |
Mikkelsen H et al.:
Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators
PLoS ONE
2009
4: E6018
|
20088866 |
Borlee BR et al.:
Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix
Mol. Microbiol.
2010
75: 827-842
|
20946878 |
Pu M et al.:
Tyrosine phosphatase TpbA controls rugose colony formation in Pseudomonas aeruginosa by dephosphorylating diguanylate cyclase TpbB
Biochem. Biophys. Res. Commun.
2010
402: 351-355
|
20300602 |
Malone JG et al.:
YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa
PLoS Pathog.
2010
6
|
21554516 |
Mikkelsen H et al.:
Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa
Environ. Microbiol.
2011
13: 1666-1681
|
17890313 |
Vallet-Gely I et al.:
Local and global regulators linking anaerobiosis to cupA fimbrial gene expression in Pseudomonas aeruginosa
J. Bacteriol.
2007
189: 8667-8676
|
21205015 |
Sivaneson M et al.:
Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression
Mol. Microbiol.
2011
79: 1353-1366
|
8790418 |
Whitchurch CB et al.:
The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa
Proc. Natl. Acad. Sci. U.S.A.
1996
93: 9839-9843
|
20352420 |
Cornelis P et al.:
Iron uptake and metabolism in pseudomonads
Appl. Microbiol. Biotechnol.
2010
86: 1637-1645
|
10658665 |
Ochsner UA et al.:
Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa
Microbiology (Reading
2000
146: 185-198
|
19906986 |
Imperi F et al.:
Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa
Proc. Natl. Acad. Sci. U.S.A.
2009
106
|
21598370 |
Wilhelm S et al.:
Autotransporters with GDSL passenger domains: molecular physiology and biotechnological applications
Chembiochem
2011
12: 1476-1485
|
20102415 |
Kim K et al.:
HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway
Immunology
2010
129: 578-588
|
22665491 |
Sana TG et al.:
The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells
J. Biol. Chem.
2012
287
|
21951860 |
Mishra M et al.:
Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization
Cell. Microbiol.
2012
14: 95-106
|
22511866 |
Li M et al.:
Structural basis for type VI secretion effector recognition by a cognate immunity protein
PLoS Pathog.
2012
8
|
22496644 |
Bucior I et al.:
Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium
PLoS Pathog.
2012
8
|
21991261 |
Franklin MJ et al.:
Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl
Front Microbiol
2011
2: 167
|
22401915 |
Kahle NA et al.:
Bacterial quorum sensing molecule induces chemotaxis of human neutrophils via induction of p38 and leukocyte specific protein 1 (LSP1)
Immunobiology
2013
218: 145-151
|
21667084 |
Muller MM et al.:
Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production
Appl. Microbiol. Biotechnol.
2011
91: 251-264
|
17464046 |
Yang L et al.:
Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa
Microbiology (Reading
2007
153: 1318-1328
|
21626303 |
Okuda J et al.:
Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa
J. Infect. Chemother.
2011
17: 782-792
|
20805335 |
Okuda J et al.:
Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na,K-ATPase regulator, FXYD3
Infect. Immun.
2010
78: 4511-4522
|
21607656 |
Sonnleitner E et al.:
Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species
Appl. Microbiol. Biotechnol.
2011
91: 63-79
|
20626455 |
Linares JF et al.:
The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa
Environ. Microbiol.
2010
12: 3196-3212
|
22927813 |
Luckett JC et al.:
A Novel Virulence Strategy for Pseudomonas aeruginosa Mediated by an Autotransporter with Arginine-Specific Aminopeptidase Activity
PLoS Pathog.
2012
8
|
18245294 |
Overhage J et al.:
Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance
J. Bacteriol.
2008
190: 2671-2679
|
22906320 |
Lossi NS et al.:
The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system
Mol. Microbiol.
2012
86: 437-456
|
21873404 |
Lossi NS et al.:
Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa
Microbiology (Reading
2011
157: 3292-3305
|
22848596 |
de Lima CD et al.:
ExoU Activates NF-kappaB and Increases IL-8/KC Secretion during Pseudomonas aeruginosa Infection
PLoS ONE
2012
7
|
22767897 |
Basler M et al.:
Type 6 secretion dynamics within and between bacterial cells
Science
2012
337: 815
|
22719261 |
Pukkila-Worley R et al.:
Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection
PLoS Genet.
2012
8
|
22710876 |
Gellatly SL et al.:
The Pseudomonas aeruginosa PhoP-PhoQ two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation
Infect. Immun.
2012
80: 3122-3131
|
23188826 |
Van der Meeren R et al.:
New insights into the assembly of bacterial secretins: structural studies of the periplasmic domain of XcpQ from Pseudomonas aeruginosa
J. Biol. Chem.
2013
288: 1214-1225
|
22497280 |
Damron FH et al.:
Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa
Mol. Microbiol.
2012
84: 595-607
|
22500651 |
Dossel J et al.:
Pseudomonas aeruginosa-derived rhamnolipids subvert the host innate immune response through manipulation of the human beta-defensin-2 expression
Cell. Microbiol.
2012
14: 1364-1375
|
23071278 |
Hallstrom T et al.:
Dihydrolipoamide dehydrogenase of Pseudomonas aeruginosa is a surface-exposed immune evasion protein that binds three members of the factor H family and plasminogen
J. Immunol.
2012
189: 4939-4950
|
17709513 |
Kunert A et al.:
Immune evasion of the human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a factor H and plasminogen binding protein
J. Immunol.
2007
179: 2979-2988
|
22080193 |
Okuda J et al.:
Complementation of the exoS gene in the pvdE pyoverdine synthesis gene-deficient mutant of Pseudomonas aeruginosa results in recovery of the pvdE gene-mediated penetration through the intestinal epithelial cell barrier but not the pvdE-mediated virulence in silkworms
J. Infect. Chemother.
2012
18: 332-340
|
22496657 |
Gendrin C et al.:
Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa
PLoS Pathog.
2012
8
|
22991039 |
von Hoven G et al.:
Modulation of translation and induction of autophagy by bacterial exoproducts
Med. Microbiol. Immunol.
2012
201: 409-418
|
23306835 |
Fu P et al.:
Role of nicotinamide adenine dinucleotide phosphate-reduced oxidase proteins in Pseudomonas aeruginosa-induced lung inflammation and permeability
Am. J. Respir. Cell Mol. Biol.
2013
48: 477-488
|
23150540 |
LeRoux M et al.:
Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword
Proc. Natl. Acad. Sci. U.S.A.
2012
109
|
23415234 |
Basler M et al.:
Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions
Cell
2013
152: 884-894
|
22765374 |
Casabona MG et al.:
An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa
Environ. Microbiol.
2013
15: 471-486
|
23277552 |
Korgaonkar A et al.:
Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection
Proc. Natl. Acad. Sci. U.S.A.
2013
110: 1059-1064
|
21169497 |
Korgaonkar AK et al.:
Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan
J. Bacteriol.
2011
193: 909-917
|
23209420 |
de Bentzmann S et al.:
Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB
PLoS Pathog.
2012
8
|
20192961 |
Salacha R et al.:
The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system
Environ. Microbiol.
2010
12: 1498-1512
|
23311922 |
Kida Y et al.:
EprS, an autotransporter protein of Pseudomonas aeruginosa, possessing serine protease activity induces inflammatory responses through protease-activated receptors
Cell. Microbiol.
2013
15: 1168-1181
|
22835944 |
Ball G et al.:
Type II-dependent secretion of a Pseudomonas aeruginosa DING protein
Res. Microbiol.
2012
163: 457-469
|
3138529 |
Filloux A et al.:
Phosphate regulation in Pseudomonas aeruginosa: cloning of the alkaline phosphatase gene and identification of phoB- and phoR-like genes
Mol. Gen. Genet.
1988
212: 510-513
|
23552891 |
Russell AB et al.:
Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors
Nature
2013
496: 508-512
|
23481600 |
Howell HA et al.:
Type III secretion of ExoU is critical during early Pseudomonas aeruginosa pneumonia
MBio
2013
4
|
9218766 |
Chapon-Herve V et al.:
Regulation of the xcp secretion pathway by multiple quorum-sensing modulons in Pseudomonas aeruginosa
Mol. Microbiol.
1997
24: 1169-1178
|
17351035 |
Michel GP et al.:
XphA/XqhA, a novel GspCD subunit for type II secretion in Pseudomonas aeruginosa
J. Bacteriol.
2007
189: 3776-3783
|
1618748 |
Kounnas MZ et al.:
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds and internalizes Pseudomonas exotoxin A
J. Biol. Chem.
1992
267
|
19651860 |
Van Alst NE et al.:
Nitrite reductase NirS is required for type III secretion system expression and virulence in the human monocyte cell line THP-1 by Pseudomonas aeruginosa
Infect. Immun.
2009
77: 4446-4454
|
23129634 |
Recinos DA et al.:
Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity
Proc. Natl. Acad. Sci. U.S.A.
2012
109
|
23341461 |
Lossi NS et al.:
The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure
J. Biol. Chem.
2013
288: 7536-7548
|
20386693 |
Oglesby-Sherrouse AG et al.:
Characterization of a heme-regulated non-coding RNA encoded by the prrF locus of Pseudomonas aeruginosa
PLoS ONE
2010
5: E9930
|
15210934 |
Wilderman PJ et al.:
Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis
Proc. Natl. Acad. Sci. U.S.A.
2004
101: 9792-9797
|
23132494 |
Sayeed S et al.:
Multifunctional role of human SPLUNC1 in Pseudomonas aeruginosa infection
Infect. Immun.
2013
81: 285-291
|
21632717 |
Lukinskiene L et al.:
Antimicrobial activity of PLUNC protects against Pseudomonas aeruginosa infection
J. Immunol.
2011
187: 382-390
|
22927440 |
Benabid R et al.:
Neutrophil elastase modulates cytokine expression: contribution to host defense against Pseudomonas aeruginosa-induced pneumonia
J. Biol. Chem.
2012
287
|
18802098 |
Hirche TO et al.:
Neutrophil elastase mediates innate host protection against Pseudomonas aeruginosa
J. Immunol.
2008
181: 4945-4954
|
23630954 |
Mustafi S et al.:
Regulation of Rab5 Function during Phagocytosis of Live Pseudomonas aeruginosa in Macrophages
Infect. Immun.
2013
81: 2426-2436
|
9680212 |
Martinez A et al.:
Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion
Mol. Microbiol.
1998
28: 1235-1246
|
11985723 |
Ball G et al.:
A novel type II secretion system in Pseudomonas aeruginosa
Mol. Microbiol.
2002
43: 475-485
|
22131330 |
Laarman AJ et al.:
Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways
J. Immunol.
2012
188: 386-393
|
19730690 |
Llamas MA et al.:
A Novel extracytoplasmic function (ECF) sigma factor regulates virulence in Pseudomonas aeruginosa
PLoS Pathog.
2009
5
|
23911207 |
Devarajan A et al.:
Role of PON2 in innate immune response in an acute infection model
Mol. Genet. Metab.
2013
110: 362-370
|
23570569 |
Neidig A et al.:
TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa
BMC Microbiol.
2013
13: 77
|
23861975 |
Longo F et al.:
A New Transcriptional Repressor of the Pseudomonas aeruginosa Quorum Sensing Receptor Gene lasR
PLoS ONE
2013
8
|
23919994 |
Robert-Genthon M et al.:
Unique features of a Pseudomonas aeruginosa alpha2-macroglobulin homolog
|
23143799 |
Cattoir V et al.:
Transcriptional response of mucoid Pseudomonas aeruginosa to human respiratory mucus
MBio
2013
3
|
22275523 |
Wei Q et al.:
Global regulation of gene expression by OxyR in an important human opportunistic pathogen
Nucleic Acids Res.
2012
40: 4320-4333
|
23990788 |
Valentine CD et al.:
X-Box Binding Protein 1 (XBP1s) Is a Critical Determinant of Pseudomonas aeruginosa Homoserine Lactone-Mediated Apoptosis
PLoS Pathog.
2013
9
|
23041624 |
Lee RJ et al.:
T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection
J. Clin. Invest.
2012
122: 4145-4159
|
20739289 |
Schwarzer C et al.:
Pseudomonas aeruginosa Homoserine lactone activates store-operated cAMP and cystic fibrosis transmembrane regulator-dependent Cl- secretion by human airway epithelia
J. Biol. Chem.
2010
285
|
23690396 |
Konings AF et al.:
Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs
Infect. Immun.
2013
81: 2697-2704
|
24034668 |
Wang D et al.:
Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa
BMC Genomics
2013
14: 618
|
21957445 |
Lamarche MG et al.:
MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline)
PLoS ONE
2011
6
|
23292701 |
Dong YH et al.:
The global regulator Crc plays a multifaceted role in modulation of type III secretion system in Pseudomonas aeruginosa
Microbiologyopen
2013
2: 161-172
|
24098557 |
Kausar S et al.:
Comparative Molecular Docking Analysis of Cytoplasmic Dynein Light Chain DYNLL1 with Pilin to Explore the Molecular Mechanism of Pathogenesis Caused by Pseudomonas aeruginosa PAO
PLoS ONE
2013
8
|
23686852 |
Boncoeur E et al.:
Induction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKCalpha-beta1 in alveolar epithelial cells
Am. J. Physiol. Lung Cell Mol. Physiol.
2013
305: L175-L184
|
20732998 |
Angus AA et al.:
The ADP-ribosylation domain of Pseudomonas aeruginosa ExoS is required for membrane bleb niche formation and bacterial survival within epithelial cells
Infect. Immun.
2010
78: 4500-4510
|
18316391 |
Angus AA et al.:
Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility
Infect. Immun.
2008
76: 1992-2001
|
21843628 |
Hritonenko V et al.:
Adenylate cyclase activity of Pseudomonas aeruginosa ExoY can mediate bleb-niche formation in epithelial cells and contributes to virulence
Microb. Pathog.
2011
51: 305-312
|
24058462 |
Heimer SR et al.:
Pseudomonas aeruginosa Utilizes the Type III Secreted Toxin ExoS to Avoid Acidified Compartments within Epithelial Cells
PLoS ONE
2013
8
|
24204589 |
Sana TG et al.:
Divergent Control of Two Type VI Secretion Systems by RpoN in Pseudomonas aeruginosa
PLoS ONE
2013
8
|
23720811 |
Glucksam-Galnoy Y et al.:
The bacterial quorum-sensing signal molecule N-3-oxo-dodecanoyl-L-homoserine lactone reciprocally modulates pro- and anti-inflammatory cytokines in activated macrophages
J. Immunol.
2013
191: 337-344
|
24260549 |
Jones C et al.:
Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System
PLoS ONE
2013
8
|
24327342 |
Arts IS et al.:
Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa
MBio
2013
4
|
23653444 |
Barbier M et al.:
Lysine trimethylation of EF-Tu mimics platelet-activating factor to initiate Pseudomonas aeruginosa pneumonia
MBio
2013
4
|
24312357 |
Audia JP et al.:
In the Absence of Effector Proteins, the Pseudomonas aeruginosa Type Three Secretion System Needle Tip Complex Contributes to Lung Injury and Systemic Inflammatory Responses
PLoS ONE
2013
8
|
24349231 |
Strempel N et al.:
Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa
PLoS ONE
2013
8
|
24379284 |
Yeung AT et al.:
Requirement of the Pseudomonas aeruginosa CbrA Sensor Kinase for Full Virulence in a Murine Acute Lung Infection Model
Infect. Immun.
2014
82: 1256-1267
|
24308329 |
Wenner N et al.:
NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence
|
24626230 |
Golovkine G et al.:
VE-Cadherin Cleavage by LasB Protease from Pseudomonas aeruginosa Facilitates Type III Secretion System Toxicity in Endothelial Cells
PLoS Pathog.
2014
10
|
23974244 |
Huber P et al.:
Sequential inactivation of Rho GTPases and Lim kinase by Pseudomonas aeruginosa toxins ExoS and ExoT leads to endothelial monolayer breakdown
|
23796404 |
Frangipani E et al.:
The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa
Environ. Microbiol.
2014
16: 676-688
|
24023939 |
Balczon R et al.:
Pseudomonas aeruginosa exotoxin Y-mediated tau hyperphosphorylation impairs microtubule assembly in pulmonary microvascular endothelial cells
PLoS ONE
2013
8
|
24748613 |
Cadoret F et al.:
Txc, a new type II secretion system of Pseudomonas aeruginosa strain PA7, is regulated by the TtsS/TtsR two-component system and directs specific secretion of the CbpE chitin-binding protein
J. Bacteriol.
2014
196: 2376-2386
|
25009238 |
Faure LM et al.:
Characterization of a novel two-partner secretion system implicated in the virulence of Pseudomonas aeruginosa
Microbiology (Reading
2014
160: 1940-1952
|
24794869 |
Hachani A et al.:
The VgrG proteins are a la carte delivery systems for bacterial type VI effectors
J. Biol. Chem.
2014
289
|
24589350 |
Whitney JC et al.:
Genetically distinct pathways guide effector export through the type VI secretion system
Mol. Microbiol.
2014
92: 529-542
|
24528863 |
Elsen S et al.:
A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia
Cell Host Microbe
2014
15: 164-176
|
26080006 |
Belon C et al.:
A Macrophage Subversion Factor Is Shared by Intracellular and Extracellular Pathogens
PLoS Pathog.
2015
11
|
25784698 |
Burstein D et al.:
Novel type III effectors in Pseudomonas aeruginosa
MBio
2015
6
|
24699069 |
Neeld D et al.:
Pseudomonas aeruginosa injects NDK into host cells through a type III secretion system
Microbiology (Reading
2014
160: 1417-1426
|
26037124 |
Sana TG et al.:
Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network
MBio
2015
6
|
25375398 |
Tran CS et al.:
The Pseudomonas aeruginosa type III translocon is required for biofilm formation at the epithelial barrier
PLoS Pathog.
2014
10
|
25894344 |
Ravichandran A et al.:
Global Regulator MorA Affects Virulence-Associated Protease Secretion in Pseudomonas aeruginosa PAO1
PLoS ONE
2015
10
|
25447517 |
Phippen CW et al.:
Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator
FEBS Lett.
2014
588: 4631-4636
|
17803773 |
Meissner A et al.:
Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate
Environ. Microbiol.
2007
9: 2475-2485
|
25845843 |
Ince D et al.:
Secretion of Flagellar Proteins by the Pseudomonas aeruginosa Type III Secretion-Injectisome System
J. Bacteriol.
2015
197: 2003-2011
|
24782516 |
Kulkarni PR et al.:
A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa
Nucleic Acids Res.
2014
42: 6811-6825
|
25926530 |
Miklavic S et al.:
The Pseudomonas aeruginosa RhlR-controlled aegerolysin RahU is a low-affinity rhamnolipid-binding protein
|
25136128 |
Eierhoff T et al.:
A lipid zipper triggers bacterial invasion
Proc. Natl. Acad. Sci. U.S.A.
2014
111
|
25119038 |
Moura-Alves P et al.:
AhR sensing of bacterial pigments regulates antibacterial defence
Nature
2014
512: 387-392
|
24917597 |
Rangel SM et al.:
The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia
MBio
2014
5
|
24385476 |
Azghani AO et al.:
Mechanism of fibroblast inflammatory responses to Pseudomonas aeruginosa elastase
Microbiology (Reading
2014
160: 547-555
|
24499192 |
Chai W et al.:
Pseudomonas pyocyanin stimulates IL-8 expression through MAPK and NF-kappaB pathways in differentiated U937 cells
BMC Microbiol.
2014
14: 26
|
11591691 |
Mavrodi DV et al.:
Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1
J. Bacteriol.
2001
183: 6454-6465
|
18802092 |
Rada B et al.:
The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells
J. Immunol.
2008
181: 4883-4893
|
12871859 |
O'Malley YQ et al.:
The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells
Am. J. Physiol. Lung Cell Mol. Physiol.
2003
285
|
18845244 |
Schwarzer C et al.:
Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells
Free Radic. Biol. Med.
2008
45: 1653-1662
|
10024562 |
Britigan BE et al.:
The Pseudomonas aeruginosa secretory product pyocyanin inactivates alpha1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease
Infect. Immun.
1999
67: 1207-1212
|
20962773 |
Rada B et al.:
Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin
Mucosal Immunol
2011
4: 158-171
|