General Information:
Id: | 4,928 |
Diseases: |
Diabetes mellitus, type II
- [OMIM]
Insulin resistance |
Homo sapiens | |
Europeans | |
article | |
Reference: | Floegel A et al.(2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach Diabetes 62: 639-648 [PMID: 23043162] |
Interaction Information:
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48728 |
disease increases_quantity of drug/chemical compound |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48740 |
disease increases_quantity of drug/chemical compound |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48743 |
disease increases_quantity of drug/chemical compound PC aa C32:1 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48744 |
disease increases_quantity of drug/chemical compound PC aa C36:1 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48745 |
disease increases_quantity of drug/chemical compound PC aa C38:3 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48746 |
disease increases_quantity of drug/chemical compound PC aa C40:5 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48751 |
disease decreases_quantity of drug/chemical compound |
Drugbank entries | Show/Hide entries for |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48752 |
disease decreases_quantity of drug/chemical compound SM C16:1 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48753 |
disease decreases_quantity of drug/chemical compound PC ae C34:3 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48754 |
disease decreases_quantity of drug/chemical compound PC ae C40:6 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48755 |
disease decreases_quantity of drug/chemical compound PC ae C42:5 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48756 |
disease decreases_quantity of drug/chemical compound PC ae C44:4 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48757 |
disease decreases_quantity of drug/chemical compound PC ae C44:5 |
Comment | The association between serum metabolites measured by targeted metabolomics and risk of T2D was investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. |
Formal Description Interaction-ID: 48758 |
disease decreases_quantity of drug/chemical compound LysoPC(18:2) |
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48761 |
|
Comment | In EPIC-Potsdam, isoleucine, valine, tyrosine, and phenylalanine were positively associated with T2D risk. Leucine was not measured in EPIC-Potsdam. |
Formal Description Interaction-ID: 48762 |
disease Diabetes mellitus, type II increases_quantity of drug/chemical compound |
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48763 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48764 |
|
Drugbank entries | Show/Hide entries for Glycine |
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48765 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48766 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48767 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48768 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48769 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48770 |
drug/chemical compound PC aa C32:1 increases_activity of phenotype decreased insulin sensitivity |
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48771 |
drug/chemical compound PC aa C36:1 increases_activity of phenotype decreased insulin sensitivity |
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48772 |
drug/chemical compound PC aa C38:3 increases_activity of phenotype decreased insulin sensitivity |
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48773 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48774 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48775 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48776 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48777 |
|
Drugbank entries | Show/Hide entries for Glycine |
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48778 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48779 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48780 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48781 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48782 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48783 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48784 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48785 |
|
Comment | Data from the T√ľbingen Family study revealed that acyl-alkyl-phosphatidylcholines, lysophosphatidylcholine C18:2, and glycine were positively associated with insulin sensitivity, whereas hexose and diacyl-phosphatidylcholines were inversely related to insulin sensitivity. Furthermore, phenylalanine was positively associated with insulin secretion, whereas hexose, sphingomyelin C16:1, and acyl-alkyl-phosphatidylcholines were inversely related to insulin secretion. |
Formal Description Interaction-ID: 48786 |
|
Comment | In EPIC-Potsdam, isoleucine, valine, tyrosine, and phenylalanine were positively associated with T2D risk. Leucine was not measured in EPIC-Potsdam. |
Formal Description Interaction-ID: 48787 |
disease Diabetes mellitus, type II increases_quantity of drug/chemical compound |
Comment | In EPIC-Potsdam, isoleucine, valine, tyrosine, and phenylalanine were positively associated with T2D risk. Leucine was not measured in EPIC-Potsdam. |
Formal Description Interaction-ID: 48788 |
disease Diabetes mellitus, type II increases_quantity of drug/chemical compound |